Damage identification in beams using inverse methods
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Abstract

Beams, made of brittle materials like @ncrete or cement, show increasing cradk development during their
service life due to mechanicd and environmental loadings. This locd damage can be trandated into a
reduction of the local bending stiffness. Stiff nessmodifications, while assuming constant massdistribution,
can be observed by monitoring the vibrational behavior of the beam. In this paper the modal parameters of
an undmaged bean are monitored and compared with the vibration kehavior of the beam subjected to
controlled damaging. Seleded stiff ness parameters in the finite element model are aljusted in such a way
that the mmputed modal quantities match the measured quentities. FEMtools has been used to establish a
damage distribution in beams asociated with increasing stresspatterns. State of the at scanning laser modal
equipment has been used for this purpose. It has been foundthat modal updating isindeed a possble tool to

reconstruct the damage patterns.

1 Introduction

The ability to monitor a structure and cetect
damage & the earliest possible stage is of outmost
importance in the dvil, mechanicd and aeospace
engineaing communities, Commonly used damage
detection methods are either visual or localized
experimental methods duch as acoustic or ultrasonic
methods, magnetic field methods, radiograph, Eddy
current methods and thermal field methods [1]. Al
of these experimental techniques require that the
location d the damage is known a priori and that the
portion of the structure being inspected is readily
acessble. Subjected to these limitations, these
experimental methods can detect damage on a near
the surface of the structure. The need for additional
global damage detection methods that can be
applied to complex structures has led to the
development and continued research of methods that
examine danges in the vibration characteristics of
the structure.

Many constructions dow increasing crack
development during their service life due to
mechanical and environmental loadings. The
damage can be trandated into a modification of
structures mass damping and stiffness properties.
A vast amourt of methods exists that examine
changes in measured vibration resporse to detect,
locate, and charaderize damage in structura and
mechanical systems. The basic idea behind these
methods is that modal parameters (notably
frequencies, mode shapes, and modal damping
factors) are functions of the physical properties of
the structure (mass damping, and stiffness).
Therefore, changes in the physica properties will
cause detectable changes in the modal properties.
Literature overview of damage Identification
methods using vibration anaysis is given, among
others, by Doebling, et a. [2], Farrar, et . [3], [4],
[5], and Rytter [6].

Detection methods using changes in modal
parameters to identify damage can be subdvided
into two digtinct approaches. The first approach,
which is called “the response-based approach”,



compares modal parameters of the undamaged
structure with the modal parameters obtained onthe
same structure in a damaged condtion. The
presence and severity of the damage can be assessed
by evaluating the changes in natural frequencies and
damping ratios. A detaled example of the
application d resporse-based damage detection, by
investigating the changes in modal curvatures of a
highway bridge can be foundin [7].

The second approach, “the model-based
approadh”, aims at finding a set of model parameters
of amathematical model, in most cases a FE-model,
of the mnsidered structure, in order to have a
optimal correlation between the experimentaly
measured and numerically cdculated moda
parameters. Damage can then be assessed by
investigating the obtained model parameters. An
application d the model-based concept can be found
in [8], where this approach was used to investigate a
damaged reinforced concrete beam under laboratory
condtions. A genera review of the model-based
approach can befoundin [9].

The resporse-based approach is a very time
efficient way of identifying damage, bu these
methods have one magor drawbadck, the moda
parameters of the undamaged structure have to be
known. While the model-based approach demands
considerably larger calculation times than the
response based approach, it has the major advantage
of only nedaling the moda parameters of the
damaged structure. This important quality of the
model-based approach opens the way to new
application fields of these methods. The éastic
material properties of test beam or plates can be
identified from vibration behavior as described in
[10]. A major assumption made in [10] is the
homogeneity of the test samples. This homogeneity
asumptionis acceptable, without prior verification,
in the case of metal test specimen, bu it the cae of
composite materials a preliminary chedk of the
homogeneity would be gpropriate. Model-based
damage identification could be used as a tool for
such an evaluation.

This paper discusses the application of a model-
based approadc to identify the homogeneity of an
undamaged cement beamn, and the damage pattern of
the same beam after damaging. The results obtained
with FEM-updating routine are validated by means
of an analytical method called the “Single Point
Identification” or “Direct Stiffness Calculation”
[11]. The results of both methods confirmed each
other.

2 The FEM-updating
identification routine

Structural damage is typically related to changes
in the modal parameters of a structure, and by
running a series of FE simulations of a cantilever
and a smply suppated bean, Pandey et al. [12]
showed that the modal curvatures are highly
sengitive to damage, and that they can be used for
damage identification a localizaion. The modal
curvatures are however only sensitive to variations
of the longitudina Young's moduus of a beam
specimen, and can therefore only provide a
unscaled stiffness profile. In order to dbtain a
correct absolute scaling of the stiffness, resonance
frequencies have to be incorporated into the
identification procedure.
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Figure 1: Genera flowchart of a FEM-updating.

A key step in model-based damage identification
is the updating of the finite element model of the
structure in such a way that the measured resporses
can be reproduced by the FE-model. A genera
flowchart of this operationis given in figure 1. For
a omplete review of model-updating techniques,
the reader is referred to [13]. The identificaion
procedure presented in this paper is a sensitivity
based model updating routine. Sensitivity
coefficients are the derivatives of the system
responses with respect to the model parameters, and
are needed in the cost function of the flowchart of

figure 1. To improve the conditioning of the
optimization  problem  relative  normalized
sengitivities [14] can be used (1):

s:a_RE (1)



By using the relative normali zed sensitivities the
updating procedure will minimize the relative
differences instead of the &solute differences
between the experimental en calculated resporses.
The presented upditing procedure will identify the
longitudind Young's moduus from the moda
curvatures and the resonance frequency of the first
vibration mode of abeam. If n modal curvatures are
used to update the Young's modui of a beam
divided into k zones with unform neterid
properties, then the sengtivity coefficients can be
asembled into a (n+ 1) xk sensitivity matrix:
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Improved model parameters can be found ty
solving the following least-squares problem
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The use of this pure least squares cost function
resulted in a unstable updating procedure, caused by
very large danges of the model parameters,
changes that partially compensated each ather. To
eliminate these very large parameter changes, limits
onthe relative changes of the model parameters had
to be imposed. The least-squares problem was
rewritten as an ogtimization problem, and parameter
limits were imposed by adding logarithmic barrier
functions to the objective function. Finaly the
optimization problem (5) is obtained:
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@ is the barrier function ensuring that AP,
remains snaller that the limit value aj, ¢ implies
the lower bourdaries 3; on the relative parameter

changes. A detailed description of the use of
logarithmic barrier functions for optimization
purposesisgivenin[15].

3 Sensitivity analysis

Before the objective function (5) can be
evaluated, the elements of the sensitivity matrix (2)
have to be alculated. The &solute sensitivity
coefficient of the frequencies and moda
displacements can be obtained with the formulas of
Fox and Kapoor [16]. When only variation o
stiff ness parameter are taken into acmunt, and mass
normalized mode shapes are being used, these
formulas are reduced to (8) for the frequency
sengitivities and to (9) for the mode shape
sensitivities.
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However, na the sendtivity coefficients of the
modal displacements but the sensitivity coefficients
of the modal curvatures are needed in (5). The
absolute sensitivity coefficients of the modal
curvatures can be gproximated by a first order
Tayor expansion in the vicinity of the working
point:
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The easiest way to compute modal curvatures
from modal displaceanents makes use of the central
difference gproximation[7] ,i.e.,

\N| - ( 2};’;’ +Vv|+1) (11)
where h is the distance between two successive
measured locations.

By expressing the modal curvatures in (10) as
function of the modal displacements (11), and by
regroupng the gpropriate terms, the modal
Curvature sensitivities can be expressed as afunction
of the sensitivities of the modal displacements (12):
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where the modal displacement sensitivities s, can

be aculated with (9). It shoud be noted that
equation (12) is only valid if written with absolute
sengitivity coefficients.

4 Single Point Identification

To chedk the results obtained with the FEM-
updating routine described in the previous
paragraph, the following analytical “Single Point
Identification” routine was used.

The dynamic deformation d a vibrating beam
with free-free boundary conditions equals the static
deflection of the same beam loaded with the
distributed pressure p(x) if

P(X) = PAWAW(X) (13)
in which p is the mass density of the beam, A the
cross-sedional surface of the beam, w the drcular
frequency and w the modal displacements of the
considered mode of vibration. Theory of elasticity
provides the foll owing relation between the bending
moment M(x) and static deflectionw.

1 909 -y ) (19
dx

where E is the Young' s moduus of the beam and |
is the moment of inertia of the bean’s crosssection.
The bending moment M(x) of (14) can be found by
integration of the transverse shear force Q(x), which
can be found by integration of the distributed
pressure p(x) as denoted by the equations of (15).

M(X)=J’Q(C)dc
N (15)
Q(X)=J’p(c)dc

Once the bending moment M(x) is derived, the
Yourg's moduus of the bean can be evaluated
point by point by means of equation (14).

5 Results

5.1 Identification routine

The FE-model that was used in the FEM
updating routine was a one dimensional beam model
with free-free boundary conditions and consisted of

51 equally spaced nodes . The beam was divided
into 25subdamains in which the material properties
were asaumed uriform. A graphical representation
of the used model isgivenin figure 2.

I
: 1125 \

f - \
| |subdomain |

Figure 2: Schematic representation of the used FE-
model.

The use of this model gives a 50x25 sensitivity
matrix, and results in a discrete stiffness profile
containing the Young's moddi of the 25
subdamains of the beam. Vauesof a =0.5and 3 =
-0.5 were used for the mefficients barrier function
of the oonstrained minimization problem, which
resulted in a fast and smooth convergence of the
model parameters. The methodwas implemented in
the commercially avail able FEMtools software [17]
by means of the FBScripting language.

5.2 Numerically simulated experiments

In a first step, the proposed procedure was
evaluated onnumericaly generated data of the first
vibration modes of two beans with freefree
boundry condtions. The resonance frequency and
mode shapes of the beams were cculated with the
ANSYS Fe-software padkage. The first beam had a
constant longitudinal stiffnessof 70 GPa, the second
bean had a linearly varying longitudina stiffness
profile with a minimum of 45 GPa in the center, a
maximal value of 70 GPa & both ends of the beam.
Figure 3 shows the starting values and oltained
stiffness' for the uniform bean.
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Figure 3: Results obtained on the uniform beam.

Figure 4 shows the initial and dbtained stiffness
profile of the beam with a linearly varying stiffness



profile, and compares it with the correct longitudinal
stiff ness distribution.
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Figure 4: Results obtained on the beam with linear
varying stiffness distribution.

Figure 5 gives the values of the Young's
moduus of the 13" subdanain —the cater of the
bean — for the different iteration steps in the case of
the beam with the linearly varying stiffness. It can
be seen that to procedure has reached cornvergence
after about 5 iterations.
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Figure5: Convergence of the Young' s moduus
of the 13" subdamain, the FE-beam
with linealy varying stiffness.

Both examples showed that the FEM-updating
routine is able to find the crrect longitudinal
stiffness  distribution from the resonance
frequency and modal curvatures of the first mode
of a vibrating bean with freefree bourdary
condtions andthisin a stable way.

5.3 Experimental results

5.3.1 Description of the experiments

In the second stage the presented FEM-model
updating method was tested on experimental data,
measured on a vibrating dass fiber reinforced IPC
beam. IPC: Inorganic Phosphate Cement [18] is a
two-comporent system of a cdcium silicate powder

and a phosphate acid based solution of metal oxides.
After hardening the IPC’'s material properties are
similar to those of traditional cement materials. One
of the major benefits of IPC compared to other
cementious materials is the nonakaline
environment of IPC before and after hardening.
Ordinary E-glass fibers are not attadked by the
matrix and can thus be used as reinforcement. 1PC
was used in the present research because this brittle
material can be eaily damaged.

The IPC beam, with naminal dimensions of 213
x 19.5x 5 mm, was suspended to very thin wires
attadhed to the beams on the nodal lines of the first
vibration mode. The resonance frequencies and
mode shapes were obtained by means of an output
only experimental modal analysis. The bean was
aoousticdly excited with a small loudspeaker and a
Polytec Scanning Laser Dopper Vibrometer was
used to measure the resporse of the bean to the
excitation signal. The scanning area was divided
into aregular grid of 3 rows and 213 columns. The
639 measurement points that were hence obtained
yielded a spatial resolution d 1 mm in the axial
direction of the test beam. The LMS CADA-X v.
3.5C software was used to extract the moda
parameters from the measurement data.

After testing and extracting the modal
parameters, the IPC beam was damaged. Figure 6
depicts the 3-point bending setup used to induce a
controllable anourt of damage in the beam. A
maximal force P of 120 N was applied to the center
of the beam. During damaging the IPC beam was
suppated in the vicinity of the moda lines of the
first vibration mode. After damaging the modal
parameter of the bean were extracted once ajain.

\
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-5 mm

Figure 6. The 3-paint bending setup to induce a
controllable anourt of damage in the
IPC bean.

5.3.2 Conditioning of the experimental data

Experimental modal displacement data is
corrupted with noise, and the influence of the noise
bemmes worse when the mode shape derivatives are
computed. Therefore, the modal curvatures
computed from the raw experimental mode shape



were useless In oder to oltain useful modal
curvatures, the experimental mode shape was curve
fitted by means of a 10" order Lagrange polynomial.
During the arvefit, the rigid bod/ movements were
aso eliminated by putting the shear force and
bending moment at the end of the beam to zero. A
more detailed description o the used smocthing
technique is given in [19]. Figure 7 shows the raw
and curve fitted mode shape in the ceter of the
undamaged IPC beam, it is obvious that a direct
application d equation (11) on the raw mode shape
data will result in very noise corrupted modal
curvatures.
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Figure 7: The raw and curve fitted mode shape of
the first mode of the undamaged beam.

From this smoothed mode shape, the modal
curvatures were derived with equitation (11), and
the resulting modal curvature aurve was sampled at
the points that correspondwith the modal curvatures
obtained from the FE-model of the updating
procedure. The sampled modal curvatures of the
undmaged and damaged bean are plotted
respedively in figure 8 andfigure 9.
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Figure8: The sampled moda curvatures of the
undamaged |PC beam.

Both for the undamaged and damaged beam,
positive modal curvatures are found onthe both end
of the beams. This is physically impossble for

straight beam samples and is caused by a the
smoathing of the modal displacement data. The use
of these positive modal curvatures had a very
negative dfect on the stability of the FEM updsting
procedure. Therefore, the modal curvatures of the
ends of the beams were replaced by the theoretically
predicted modal curvatures of a uniform bean. On
the left side of the beams, five modal curvatures
were alapted, onthe right side only three wrvatures
had to be changed. Finaly the airves denoted as
“Adapted Modal Curvatures’ on figures 8 and 9
were obtained, and used in the FEM-upditing
routine.
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Figure9: The sampled moda curvatures of the
damaged IPC beam.

5.3.3 The experimental results

The graph of figure 10 compares the modal
curvatures of the FE-model after updating with the
experimental curvatures. A good correspordence
between experimental and numericd results was
ohtained, for both the undamaged and damaged IPC
beam. Of course, the modal curvature at the end of
the beam does not correspondwith the experimental
modal curvatures, because the positive experimental
modal curvatures were replaced by the FEM
curvatures of the uniform beam.
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Figure 10: Comparison ketween the experimental
and FE modal curvatures after updating.



Figure 11 gives the longitudina stiffness
distributions obtained with the FEM updating
routine for IPC beam in bah undamaged and
damaged condtion. It can be seen that there is a
small difference in siffness between the left and
right side of the undamaged beam, in the zone
between the nodal lines of the first vibration mode.
After damaging, a dear decrease of the stiffness is
naticed in the zone between the nodal lines. The
identificaion routine also indicates a decrease in
stiffness at the ends of the beams, and a small
increase of stiffnessat the nodal line position onthe
right side of the bean. These two phenomena can
be explained by comparing the results of the FEM
updkting routine with the results of the single point
identificaion method.
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Figure11: Thelongitudinal stiffnessdistribution o
the damaged and undmaged beam, as
obtained with the FEM updating
routine.

Figures 12 and 13 compare the results obtained
with the FEM updating routine and the single point
identification method A good agreament between
the results of two methods is found in the domain
between the nodal i nes.
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Figure12: Comparison between the results
obtained with the FEM-updgting routine
and the single point identification d the
undamaged bean.

The increase of stiffness for the damaged beam
a the position of the right nodd line is also found
by the single point identification method, together
with the deaease of stiffnessin the undamaged zone
at the ends of the beams in the vicinity of the nodd
lines. This indicates that both the increase at the
right nodal line, and the decrease of the stiffness at
the bean’'s ends are caised by the arve fitting
algorithm used to smoathen the experimental modal
displacements, and are not inherent to the FEM-
updating routine.

The negative Young's modui obtained at the
ends of the beams are aresult of the paositive values
of the modal curvatures of the aurve fitted
experiment data. Since these values were replace by
the theoretical modal curvatures of a homogeneous
beam in the FEM-updating routine, the negative E
modui are not found by the updating procedure.

B
N & o

Longitudinal E Modulus (GPa)
=
1S

o

o N A o ®

6 11 16 21 26 31 36 41 46 51
FE-Model Node

-

‘—FEM Model Updating —— One Point Identification — - Nodal Lines‘

Figure 13: Comparison  ketween the results
obtained with the FEM-updating routine
and the single point identification d the
damaged beam.

6 Conclusions

A FEM-updating procedure to identify the
longitudina stiffness profile of a bean specimen
from the modal curvatures and resonance frequency
of one single vibration mode was presented. The
method was evaluated on both numericdly
generated and experimentally measured data, and
proved to behave sable in both cases. The
experimental data was obtained onan IPC bean in
both undamaged and damaged condtion. The
application d the FEM-updating procedure resulted
in redigtic stiffnessdistribution for both urdamaged
and damaged beam. The obtained results could be
reproduced by means of an analytical single point
identificaion method.
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