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ABSTRACT 
Effects of structural flexibility on the dynamic performance of structures such as staircases, footbridges, 
and long span floors is becoming an increasingly important aspect of modern design. Cost reduction, 
improving efficiency of design, enhancement of aesthetic perception and, innovation in architectural 
forms often result in slender and lightweight structures that are significantly more flexible and vibration-
prone than ever before. Consequently, meeting relevant vibration serviceability criteria, as opposed to 
ultimate strength requirements, is becoming the governing factor in the design of many new structures. 
Despite significant advances in numerical prediction of modal properties of structures using Finite 
Element (FE) modelling technique, there still exist challenges in accurate representation of the actual 
dynamic behaviour. This is mainly due to some inherent modelling uncertainties related to a lack of 
information on the as-built structures, such as uncertainties in boundary conditions, material properties 
and the effects of non-structural elements. This paper presents the results of a modal testing exercise 
carried out to assess the dynamic behaviour of a lively staircase structure. The assessment procedure 
includes a full-scale ambient vibration testing, modal identification and FE modelling and updating. In 
particular, the influence of boundary conditions and presence of handrails on dynamic properties of the 
structure are commented. 
 
 
1. Introduction 
In recent decades, it has become increasingly popular to provide educational buildings, hotels, hospitals 
and other public areas with slender and lightweight staircases, often for aesthetic reasons. One inherent 
characteristic of this type of design is a low stiffness to mass ratio typically producing lower natural 
frequencies when compared to more traditional staircase designs. As a result, many staircases are 
dynamically responsive and the vibration serviceability criteria are becoming the governing factors in the 
design of this kind of structures. In the case of low-frequency and lightly damped staircases, their 
dynamic response due to near-resonant excitation governs their vibration performance and simulations of 
this type of near-resonant dynamic response is very sensitive to even small variations in modal properties. 
Therefore, knowing modal properties of the staircase and its mode shapes as precisely as possible is very 
important not only for the design of new structures with similar layouts, but also for the rectification of 
existing lively staircases. However, despite significant advances in numerical prediction of modal 
properties of structures using FE models, there still exist challenges in accurate representation of the 
actual dynamic behaviour. The main reason for this is the general lack of information on the as-built 
structures, such as uncertainties in boundary conditions, material properties and the effects of non-
structural elements. 
A possible approach for filling the gap between the real structural performance and the FE models is to 
employ some form of modal testing [1]. The key idea is that the FE model can be verified and improved 
by correlating the natural frequencies and mode shapes estimated from the model with those obtained 
from the modal testing. Although the modal testing is one of the most popular techniques for studying the 
dynamic behaviour of engineering structures, there are only a few articles related to both experimental 
measurement and FE modelling staircases [2,3]. 
Once the modal properties of the staircase (mainly natural frequencies and mode shapes) are identified 
experimentally, the level of error introduced by the initially developed FE model can be identified 
together with the drawbacks in the FE modelling and the initial FE model can be corrected by means of 
FE model updating techniques [4,5]. 
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1B: 6.37 Hz 2B: 18.63 Hz 1T: 29.03 Hz 

Figure 9. Mode shapes and natural frequencies obtained experimentally 
 
From some preliminary studies, it is known that the first vibration mode at around 6.3 Hz is responsible 
for liveliness of the staircase. To study this mode in more detail, a free vibration test was conducted. A 
person was jumping on the staircase at 3.15 Hz and then walked off the structure. The free decay response 
recorded is shown in Figure 10. The natural frequency and the damping ratio were then identified from 
ten successive cycles of the free decay using the logarithmic decrement method and they are shown in 
Figure 11 and Figure 12, respectively. The average damping ratio is 0.6% for vibration amplitudes above 
1.0 m/s2, 0.54% for vibration between 0.3-1.0 m/s2, about 0.47% for vibration 0.1-0.3 m/s2 and 0.41% 
for vibration below 0.1 m/s2. 
 

 
Figure 10. Recorded free decay and free decay response envelope 

 

 
Figure 11. Natural frequency vs. amplitude 
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The stiffness of these springs was varied by trial and error until the best correlation with measured 
frequencies was obtained. A stiffness value of 500 kN/m for lateral support and 10000 kN/m for supports 
at both ends of the staircase produced the smallest difference between the measured and natural 
frequencies calculated from the FE model for the mode shapes considered. These values were adopted in 
the manually tuned FE model developed prior to automatic updating. Frequency error decreased 
significantly with the maximum value being 13.03% for mode 1B (Table 3). The MAC values changed 
only slightly. 
 

Mode number Modal testing 
fI [Hz] 

Tuned FE model 
fII [Hz] 

Difference  
(fII −fI)/fI [%] 

Mode shape correlation 
MAC [%] 

1B 6.37 7.20 13.03 99.1 
2B 18.63 18.62 -0.04 94.5 
1T 29.03 29.72 2.38 71.5 

Table 3. Correlation between experimental and manually tuned FE model 
 
 
7. Automatic model updating 
The updating procedure was conducted in order to improve further the analytical model so it could be 
used in more advanced vibration response analysis, which is beyond the scope of this paper. 
 
7.1 Target response selection 
The three measured modes of vibration (1B, 2B and 1T) were targeted in the updating process and the 
measured natural frequencies were taken into account. Therefore, in total three target responses were 
selected for updating.  
 
7.2 Parameter selection 
The main criteria for parameter selection were their uncertainty and sensitivity. Therefore, parameters 
related to the material properties of the mortar and the thickness of the steps were selected as uncertain. 
This is because of uncertain contribution of the composite steps to the stiffness of the staircase. Finally, 
the stiffness of the springs introduced in the manually tuned FE model were also taken into account. In 
total, 14 parameters were selected for the updating process with their starting values given in Table 4. 
 
7.3 Updating and results 
The updating procedure was conducted using the FEMtools updating software [10] based on the Bayesian 
technique. The Bayesian parameter estimation expression includes the use of weighting coefficients on 
the parameters as well as on the responses. The aim was to minimise the error function which includes 
differences, not only between the target experimental and numerical responses, but also between updating 
parameters in two successive iterations as well as parameters and target responses’ weights. Upper and 
lower allowable limits for parameter values were introduced in the updating procedure (Table 4). The 
parameter changes per iteration were not limited.  
The updating process converged after six iterations. The natural frequencies and MAC values obtained as 
a result of the updating are presented in Table 5. It can be seen that previous maximum frequency 
difference 13.03% decreased to 0.1%. Minimum MAC value increased from 71.5% to 82.1%, with other 
two values being well above 90%. The agreement between mode shapes in updated FE model and the 
experimental data was good, which can be seen in Figure 14.  
The final parameter values are presented in Table 5. The absolute maximum parameter change was 
41.05% for the stiffness of a support spring. It should be said that an attempt to update the initial (i.e. not 
manually tuned) FE model led to much worse frequency and MAC correlation. Therefore, the manual 
model tuning conducted before the FE updating proved to be crucial for the success of the updating 
procedure. The mass of structure obtained as a result of the updating process using the FEMtools updating 
software was 2.19 tonnes, which is very close to the initially estimated mass (2.20 tonnes). 
Finally, having in mind that the first bending mode of vibration is responsible for the staircase liveliness 
and important for further vibration analysis, the modal parameters related to this mode were possible to be 
identified by combining the FE and experimental results. These are an amplitude dependent natural 
frequency varying between 6.24 Hz and 6.37 Hz (from testing), damping ratio, which is also amplitude 
dependent and varies between 0.41% and 0.6% (from testing) and modal mass of 683 kg (from updated 
FE model). It should be pointed out that the computed value of the modal mass is expected to 
underestimate the actual modal mass, bearing in mind that the staircase moves together with the 
surrounding structure to which the staircase is attached, so the first bending mode involves more mass 
than it was modelled in the FE model. 
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Parameter 
number Type Structural part 

Allowed 
decrease 

[%] 

Allowed 
increase 

[%] 

Starting parameter 
value 

Updated parameter 
value 

Parameter 
change [%]

1 E steps -20 20 2.50E+4 (MPa) 2.09E+04 (MPa) -16.32 

2 ρ steps -10 10 2.40E+3 (Kg/m3) 2.50E+03 (Kg/m3) 4.32 

3 h steps -40 40 6.00E+1 (mm) 3.32E+01 (mm) -33.52 

4 Kx1 spring support -75 75 1.00E+4 (KN/m) 7.74E+03 (KN/m) -22.62 

5 Kx2 spring support -75 75 1.00E+4 (KN/m) 6.35E+03 (KN/m) -36.52 

6 Kx3 spring support -75 75 1.00E+4 (KN/m) 1.02E+04 (KN/m) 1.95 

7 Kx4 spring support -75 75 1.00E+4 (KN/m) 7.52E+03 (KN/m) -24.82 

8 Ky1 spring support -75 75 5.00E+2 (KN/m) 4.97E+02 (KN/m) -0.59 

9 Ky2 spring support -75 75 5.00E+2 (KN/m) 5.00E+02 (KN/m) 0.06 

10 Kz1 spring support -75 75 1.00E+4 (KN/m) 9.64E+03 (KN/m) -3.62 

11 Kz2 spring support -75 75 1.00E+4 (KN/m) 1.22E+04 (KN/m) 21.51 

12 Kz3 spring support -75 75 1.00E+4 (KN/m) 9.91E+03 (KN/m) -0.94 

13 Kz4 spring support -75 75 1.00E+4 (KN/m) 1.17E+04 (KN/m) 16.66 

14 Kz5 spring support -75 75 1.00E+4 (KN/m) 1.41E+04 (KN/m) 41.05 

Table 4. Values of starting and updated parameters 
 

Mode number Modal testing 
fI [Hz] 

Updated FE model 
fIII [Hz] 

Difference  
(fIII −fI)/fI [%] 

Mode shape correlation 
MAC [%] 

1B 6.37 6.36 -0.10 98.9 
2B 18.63 18.64 0.05 95.1 
1T 29.03 29.05 0.06 82.1 

Table 5. Correlation between experimental and updated FE model 
 

 
1B 2B 1T 

Figure 14. Overlaying of mode shapes obtained experimentally (dotted line) and 
numerically in the final FE model (solid line) 

 
 
8. Discussion 
Although a very detailed initial FE model of the staircase structure was developed based on design data 
available and best engineering judgment, the discrepancies in the natural frequencies of the two first 
bending modes and first torsional mode were quite large between the experimental and first numerical 
results.  
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This initial FE model could not be updated in a physically meaningful way by using a sensitivity-based 
procedure implemented in the FEMtools updating software. Therefore, the manual tuning was required to 
minimise the difference between the initial FE model and its experimental counterpart before 
implementing the automatic updating. 
For the staircase under study, the two screws in the side support were not able to prevent rotation of the 
structure about x-axis. Allowing for some rotation of this connection was crucial for success of tuning. 
With regard to the vertical stiffness of the supports at the top and the bottom of the stairs, it is interesting 
that the results of the updating procedure suggest that the top floor is stiffer than the bridge at the bottom. 
This is expected given the geometry of the structure. 
Finally, to study the influence of the handrail on dynamic properties of the structure, the first two bending 
modes and first torsional mode of vibration of the staircase have been calculated after removing the 
handrail from the updated FE model presented in Table 5. The natural frequencies and MAC values 
obtained for the staircase FE model without the handrail are presented in Table 6, together with the 
natural frequencies obtained in Table 5. It can be seen that the frequency difference increased and MAC 
value decreased. Particularly poor mode shape correlation was obtained for the torsional mode.  
 

Mode 
number 

Modal testing 
fI [Hz] 

Updated FE model 
fIII [Hz] 

FE model without handrail 
fIV  [%] 

Difference  
(fIV −fI)/fI [%] MAC [%] 

1B 6.37 6.36 6.52 2.31 98.8 
2B 18.63 18.64 19.49 4.65 90.1 
1T 29.03 29.05 28.82 -0.72 53.9 

Table 6. Influence of absence of the handrail  
 
 
9. Conclusions 
Using Finite Element modelling technique for numerical prediction of modal properties (natural 
frequencies and mode shapes) of the staircase structures, there is no guarantee that the initial model can 
estimate the modal properties of the staircase reasonably well, even when it is very detailed. Two first 
bending modes and first torsional mode of vibration of the staircase structure located in the Zeeman 
building on the University of Warwick Campus were identified via ambient vibration testing. A 
comparison with their estimates from the initial FE model revealed errors in the natural frequencies. 
A manual tuning of the initial FE model was required to reduce the difference between the experimental 
and numerical results. Adding flexibility to the side support and both ends of the staircase improved 
considerably the correlation between the numerical and the experimental models. Only then the numerical 
model was possible to automatically update via the FEMtools software. 
The updating procedure improved the frequency correlation and increased MAC values by changing the 
values of 14 uncertain parameters. The parameter changes suggested that the composite steps in the 
staircase were less stiff than assumed. 
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