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Abstract
In many cases, dynamic forces are not directly measurable and need to be identified using inverse methods.
A method based on the combined use of experimental responses, serving as reference test data, and finite
element analysis is used to identify dynamic forces acting on structures.
An application example demonstrates that measurements of surface velocities, measured at the outside of a
car muffler using a laser-scanning device, can be used to identify the pressure forces inside the muffler
cavity at any desired excitation frequency. In this case, the pressure forces are assumed to be a linear
combination of the acoustic modes of the cavity and the inverse method is used to obtain the participation
factor of each acoustic mode. The method requires that, prior to force identification, a finite element model
of the muffler has been updated to match its experimental dynamic behaviour in the best possible way.

1. Introduction

Knowledge of the operational loads is required to
correctly simulate the dynamic response of
mechanical structures under working conditions.
Whether the problem is related to strength,
durability, or noise, the dynamic characteristics of
the structure have to be coupled to the excitation
forces to obtain the vibrational or acoustical
responses.

Operational loads are due to mechanical or
environmental forces (fluids, gas flow, ...).
Mechanical forces are often relatively easy to
estimate or measure. Environmental forces on the
other hand, typically have a stochastical, irregular
nature. Furthermore, fluid-structure interactions
may make the forces dependent on the structural
behaviour. Such operational excitation forces are
usually not simply or directly measurable. Although
some direct measurement techniques are available
(load-cells, strain-gauges, pressure gauges,...),
mounting problems related to accessibility or
temperature conditions make their application not
practical. When analysing a partially closed cavity
like a muffler, excited by hot gas flow pressure,
such experimental approach is altogether
impossible. In the best case, pressure can be gauged
at the inlet and outlet of the cavity. Indirect
identification of forces or updating of approximate

estimates of operating forces are the only practical
alternatives.

Indirect identification is based on the solution of
a matrix system including all available frequency
response functions and vibrational responses [1].
These frequency response functions are
characteristic for the structure itself and therefore
independent of the actual excitation. Hence, they
can be obtained experimentally by means of
artificial excitation or analytically from a validated
finite element model.

Updating of forces is an iterative procedure that
starts from estimated forces and a validated finite
element model [2]. With each iteration loop, the
estimated forces are adjusted until the residual error
between predicted and measured vibrational
responses is minimised. Such a procedure is similar
to the one commonly used in sensitivity-based,
iterative finite element model updating methods [3].

Indirect identification of forces based on an
analytical response matrix and iterative force
updating both rely on the availability of a valid
finite element model. All discrepancies between
experimental and numerical responses due to
modelling of stiffness, mass and damping can then
be excluded and the only parameters are the force
locations, directions and amplitudes. However, this
requires that the modal behaviour of a FE model
and its dynamic responses are first correlated
against
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experimental data. If there is no sufficient
correlation, then modelling of stiffness, mass and
damping must be updated to the best possible
extend. For this purpose, commercial correlation
and updating software is available [4].

The number of forces that can be identified using
an indirect method is limited by the number of
responses. This number should be higher than the
number of unknown forces. In addition, the position
of the responses should be well divided on the
overall structure.

Environmental forces act on the entire surface of
the structure surface and cannot always be reduced
to some local forces, less than the number of
available responses. Alternative approaches are to
use force updating, also leading to a least squares
solution, but starting from estimated forces, or to
define a force model. In general, such a model will
be function of only a limited number of variables
that can be considered as the unknowns in the
identification procedure.

Turbulent gas flow in a cavity exercise
distributed, non-uniform, pressure loads on the
internal surface of a cavity. Assuming that fluid-
structure interaction forces and structural excitation
forces can be neglected, the internal pressure forces
are described as a function of the acoustic modes of
the cavity. The unknown variables of this function
are the participation factors of the acoustic modes in
the frequency range of interest. For each excitation
frequency at which responses are measured, these
participation factors can be obtained using an
inverse method.

2. Implementation

2.1 Basics of force identification

The proposed inverse method to identify excitation
forces is based on the following requirements:
• A finite element (FE) model, capable of

representing the dynamic behaviour of the
structure in the entire frequency range of
interest, is available.

• The modal parameters of the FE model are
validated against experimental data.

• Response measurements under operating
conditions are available.

In the input-output system theory, the output {X} at
n points is a function of the system behaviour [H]
and m forces {F} acting on the system.

Indirect force identification results from the relation
between force and output:

X H Fij ij j= (1)

where Xij  is the response at point i due to a force at

point j. The global response level at a particular
point is obtained by summing contributions of all
ingoing forces:

X H Fi ij j
j

m

=
=

∑
1

(2)

Writing this for all measurement points in matrix
form yields,

{ } [ ] { }X H Fn nm m= (3)

{ } [ ]{ }X H F= (4)

With known frequency response functions Hij ,

identification of the forcing functions is the solution
of a complex matrix equation (4).

The frequency response functions are
characteristic for the structure itself and therefore
independent of the actual excitation. In a pure
experimental approach, this property would be used
to obtain [H] by means of an artificial excitation.
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a= = (5)

where index o stands for operating conditions and
index a for artificial excitation. In a mixed
numerical-experimental approach, however, [H] is
obtained from the FE model by mathematically
synthesising the responses functions from the modal
parameters of the structure.

The operational forces can be calculated from
solution of equation 4 when dynamic responses
(displacements, velocities or accelerations) are
measured under operational conditions. These
responses must be measured simultaneously
because amplitude and phase relation between all
vibrational responses must be known.

2.2 Implementation

In order to apply force identification on full-scale
industrial models, it has been implemented in the
FEMtools software program [4]. This program
already includes tools to validate and update a finite
element model from modal and FRF measurements.
Adding force identification and updating from
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response measurements therefore is a logical
extension. Computation of forces from equation 4
using a mixed analytical-experimental approach
requires four steps:
1. Updating an FE model to obtain system mass,

stiffness and damping matrices that allow to
correctly predict normal modes and FRFs of the
structure in a given frequency range.

2. Importing experimental reference responses.
3. Expanding test data in case the experimental

responses do not cover all DOF of the FE
model,.

4. Computing forces from synthesised FRFs and
expanded test data.

There many ways to expand test data. A simple but
efficient method is SEREP [5] which is originally
designed to expand or reduce modal vectors. In this
method, a full (F) displacement vector is expressed
as a linear combination of subvectors. These
subvectors contain displacement values at the active
(A) degrees of freedom common to the finite
element model and test.

[ ] [ ][ ]X T XF A= (6)

Transformation matrix [T] is found from the
pseudo-inverse of the full analytical matrix and its
submatrix:

[ ] [ ] [ ]T X XF A= + (7)

This transformation matrix is then used to expand
experimental vectors using equation 6. The
advantage of this expansion method is that
smoothing of the expanded vectors is implicit and
that only displacement vectors are required.

For the last step, consider the equation to
compute displacement responses in the frequency
range spanning N modal parameters:

{ } { }{ } { }
( )X

Fi i

t

rii

N

=
−=

∑ ψ ψ
λ ω2 2

1

(8)

where λri
2  is the i-th eigenvalue of the damped

system, ω 2  the excitation frequency and { }ψ  the

normal modes of the structure. Several types of
damping can be considered (Rayleigh, modal).

Premultiplying left and right side with { } [ ]ψ i
t M

yields,
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Because the normal modes are normalised with
respect to the system mass matrix, this equation can
be rewritten as

{ } { } { } [ ]{ }( )F M Xi
i

N

i

t

ri= −+

=
∑ ψ ψ λ ω

1

2 2 (10)

with { }ψ
+

the pseudo-inverse of the modal matrix.

From equation 10, the forces can be directly
computed. In case forces act on only m degrees of

freedom, { }ψ i

+
 can be reduced to include only

those m degrees of freedom. Because the pseudo-
inverse of the modal matrix must be computed, the
following remarks apply:
• If the number of independent forces m is higher

than the number of modes N, then the system of
equations is underdetermined. If initial force
estimates are available, a force updating method
would be more suitable.

• If the number of independent forces m is less or
equal than the number of considered modes N,
then the forces can be directly obtained from
equation 10 which yields a minimum norm or
unique solution.

In the special case where forces are related to
acoustic pressure in a cavity, {F} can be
approximated as linear combination of M known
acoustic modes of the cavity:

{ } { }F a Fi i
acoustic

i

M

=
=
∑

1

(11)

The acoustic modes are obtained using using
acoustic analysis software. If the number of acoustic
modes M is equal to or lower than the number of
structural modes N, then the coefficients ai in
equation 11 can be found by combining equations 6,
8 and 11.

3. Application example

3.1 Description

The force identification software is validated on an
car muffler, using real-life data. The following
considerations were taken into account:
• A valid FE model of the muffler is available.

This FE model has been validated and updated
using experimental modal and FRF data.

• Forces are considered to be mainly due to
acoustic pressure inside the muffler cavity. Other
forces are neglected
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• To exclude other forces, the inlet of the muffler
is excited with white noise [300-800 Hz]. At the
same time velocities on the upper and lower
surfaces, due to the acoustic excitation inside the
muffler cavity, are measured using a laser
scanning device.

• It is assumed that the structure is only
proportionally damped although it is known that
various other damping mechanisms are active.

Force identification is done from the surface
velocity measurements, the modal parameters of the
FE model and the acoustic modes of the cavity. It is
assumed that the internal pressure distribution is a
linear combination of the acoustic modes of the
cavity and that other forces (fluid-structure
interaction, structural excitation at the boundary
conditions) can be neglected.

3.2 Results

The procedure to identify forces in this case
consists of several steps:
1. The acoustic mesh and modes are imported into

the program database (figures 1 and 2).
2. The structural FE mesh and modes are imported

into the program database (figures 3 and 4).
3. The acoustic modes are stored as modal

displacements at the nodes of the volume mesh
modelling the cavity. This model must now be
converted into a shell model with pressure data
(forces) acting on the surface. This is done by
mapping the acoustic mesh on the structural FE
mesh and then truncating the acoustic mesh.
Because one point in the acoustic mesh is
mapped onto several FE nodes, the mapping and
truncation involves an averaging of acoustic
pressures in neighbouring acoustic elements
which is then applied at the paired node. Note
that at this point the FE and acoustic mesh are
identical but that the acoustic modes are still
stored as modal displacements (figure 5).

4. At this time, acoustic pressures are represented
using 3 displacement components. The next step
is to project each pressure normal to the surface
and then convert nodal pressure to nodal force
(figure 6). To do this, nodal pressures are
divided by the one quarter of the surface of each
adjacent element. The acoustical force vector
base will serve as the basis for force
identification.

5. Laser velocity measurement data for the upper
surface of the muffler is imported. The original
velocity data being too noisy, a filter is applied

that averages the data. Each point is considered
to be at the centre of a 3x3 matrix. The filtered
value is the sum of the averages of the point with
each of his 4 connected neighbours and then
divided by four (figures 7 and  8).

6. Next, the scanning grid is mapped on the surface
of the muffler. Only those grid locations closest
to an FE node are kept. The other grid locations
and associated velocities are deleted from the
database (figure 9).

7. After expansion of the test data for the nodes at
which no test data is available, forces can be
identified. The result is presented as
participation factors for each of the acoustic
modes at each excitation frequency where
surface velocities were measured (figure 10) and
as colour-coded plots of the force fields (figure
11). From the figures, it can be seen that force
fields strongly vary with frequency.

8. Finally, the force vectors are exported in a
format than can be used by finite element
software for further forced responses analysis.

3.3 Verification

It is in practice impossible to measure the internal
pressure forces and compare them with the
identified ones. Verification of the result is only
possible by re-computing the velocities, using the
identified forces, and comparing this result with the
measured displacements. This is also verified for
the lower surface although this data was not
included in the force identification procedure.

The displacement correlation table is shown in
figures 12 and 13. A correlation criterion similar to
MAC [6] is used. Correlation results for the upper
surface range between 70-90% for most of the
excitation frequencies. This is less true for the
lower surface suggesting that it is required to
include test data distributed over the entire surface
instead of relying on expansion methods.

The results, however, are considered to be
satisfactory considering
• incomplete, noisy test data (expansion and

filtering required)
• remaining imperfections of the FE model, even

after updating (damping, non-linearities)
• errors due to modal truncation
• no fluid-structure interaction forces or other

forces are taken into account
Further visual verification and interpretation of

the results can be done by superimposing predicted
and measured displacements. (figure 14).
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4. Conclusions

A inverse method was presented to identify
dynamic forces using a validated FE model of a
structure and experimental responses at a number of
excitation frequencies. A major manufacturer of
mufflers (ECIA) has successfully applied it as part
of a project to optimise acoustic performance of its
products. The identification software can easily be
integrated in an existing analysis environment
consisting of various design, simulation and
measurement tools.

Further investigations are required to describe
and reduce errors due to modal truncation, noisy
test data, expansion of test data, and remaining
errors in the finite element model. However, it has
been demonstrated that by combining laser scanning
measurements and an approximate FE model, it is
possible to obtain valuable information on unknown
internal pressure forces in complex structures like
mufflers. The procedure can easily be adapted to
work for any type of experimental information
(operational deflection shapes, velocity or
acceleration) to identify nodal or distributed forces.
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Figures

Figure 1:  Finite element model of a muffler cavity
used for acoustical modal analysis using 3D volume
elements.

Figure 2:  Example of an acoustic mode (256 Hz;
modulus).

Figure 3: Structural finite element model using shell
elements.



Identification of Gas Flow Pressure Forces in a Cavity using an Inverse Method

6

Figure 4:  Example of a structural mode (260 Hz

Figure 5:  Acoustic mode after mapping on FE mesh
(256 Hz).

Figure 6:  Nodal force distribution obtained from
the acoustic mode at 256 Hz.

Figure 7:  Scanning grid for laser velocity
measurements.

Figure 8:  Laser velocity measurements at 386.2 Hz
(top = unfiltered, bottom = filtered).
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Figure 9:  Mapping the scanning grid onto the
muffler surface (top = mapping; bottom = reduced
scanning grid)..

DYNAMIC EXCITATION FORCE IDENTIFICATION
EXCITATION           :          1
PARTICIPATION FACTORS
      VECT          REAL     IMAGINARY
         1 -0.404800E-01  0.109077
         2  0.885560E-01 -0.188120
         3 -0.161135E-01 -0.139174
         4 -0.237507      0.542591
         5  0.596707E-01 -0.104541
         6 -0.258851E-02  0.295065E-01
         7 -0.235892E-01  0.423879E-01
         8 -0.944698E-02  0.199800E-01
         9 -0.166131E-01  0.599786E-01
        10  0.109827E-01 -0.433330E-01
        11  0.502019E-02 -0.394135E-01
        12  0.155390E-01 -0.235219E-01
        13 -0.137111E-01  0.307866E-01
        14 -0.132813E-01  0.413881E-01
        15  0.729303E-02 -0.247328E-01
        16  0.428704E-02 -0.110684E-01
        17 -0.626452E-02  0.169691E-01
        18 -0.371021E-03  0.990164E-03
        19  0.519295E-03 -0.137248E-02
        20  0.601062E-03 -0.363239E-02

Figure 10:  Identified participation factors for the
first excitation frequency.

Figure 11:  Visual representation of the force
distribution at two different excitation frequencies
(386.2 Hz and 877.5 Hz).
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FEA TEST DAC Upper
Surface (%)

DAC Lower
Surface (%)

1 1 84.5 -
2 2 71.2 -
3 3 84.7 20.7
4 4 76.7 26.1
5 5 18.2 -
6 6 61.3 -
7 7 92.0 45.2
8 8 87.0 21.0
9 9 88.5 24.6
10 10 72.8 32.1
11 11 88.4 66.9
12 12 49.5 16.9
13 13 25.8 28.7
14 14 73.5 -
15 15 20.8 12.1
16 16 7.3 -
17 17 70.0 -

Figure 12:  Correlation in terms of Displacement
Correlation Criterion (DAC) between measured and
computed displacements at 17 excitation
frequencies.

Figure 13: Displacement Assurance Criterion matrix
showing correlation between predicted and
measured displacements at 17 excitation
frequencies (top = upper surface; bottom = lower
surface).

Figure 14:  Superposed pair of predicted and
measured displacements at excitation frequency
386.2 Hz, showing a FE mesh reduced to the size of
the scanning grid.


