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ABSTRACT 
 
Finite element analysis has become an essential tool to 
support virtual product development. However, a lot of 
uncertainty exists in the modelling of physical structures, 
and in the effects on their performance of variability in 
manufacturing and usage of products. To successfully 
make the move to digital prototyping, and thereby reduce 
the number of physical prototypes, predictions of 
performance should be provided with a measure of 
confidence and validated against experimental data. This 
requires quantifying the physical and numerical uncertainty. 

Current FE model validation and updating practice is based 
on nominal values for input parameters and test results. 
The consequences of using random updating parameters 
that represent uncertainty and statistical test data are 
described. Scenarios for how to incorporate probabilistic 
simulation tools like Monte Carlo Simulation in model 
validation and updating procedures are outlined. 

Keywords: simulation model validation, model updating, 
uncertainty analysis, probabilistic analysis, structural 
dynamics. 
 
1. INTRODUCTION 
 
The integration of CAD and CAE solvers, automatic 
meshing algorithms, parallel and distributed computing and 
the availability of relatively low cost engineering 
workstations has led to an inflation of finite element model 
sizes.  
 
However, although the complexity of engineering problems 
that can be addressed nowadays has become impressive, 
model validation should not be overlooked. A numerical 
model is worth only as much as the level of confidence in 
the results that the analyst is able to guarantee. Without 
this guarantee, numerical analysis cannot become the 
trustworthy engineering simulation tool on which the virtual 
product development revolution will depend. Validation 
methodologies have to consider the increasing complexity 
of numerical simulations when applied to realistic industrial 
problems.  

 
Comparison of numerical analysis results with experimental 
data is an accepted way of validating a model, and in the 
absence of theoretical solutions may be the only possible 
one. In many situations, the outcome of this test-analysis 
correlation is not satisfactory and needs to be followed by a 
model updating phase. However, although most analysts 
will recognize that uncertainty exists in both the numerical 
simulations and the experimental data that serves as 
reference data, this aspect has not really yet been taken 
into account by the current correlation and updating 
techniques [1]. 
 
Classical deterministic approaches may lead to false and 
misleading conclusions if incomplete, uncertain and noisy 
data is used. It is clear that this danger can only be 
overcome by adopting statistical techniques. Instead of 
comparing single analysis or test results, statistical 
correlation compares sets of data that reflect the variability 
of the structural responses as the result of scatter, 
uncertainty and noisiness. The result of this working with 
fuzzy data will be that good or bad correlation will be 
quantified with a given probability and thus provide the 
analyst a measure of confidence on the correlation metrics. 
 
Model updating technology has matured over the past 
decades and today commercial software solutions are 
available that assist analysts not only with data 
management and graphical visualization, but provide all 
the essential analysis tools like pretest analysis, correlation 
analysis, error localization, data expansion and/or 
reduction, sensitivity analysis and dedicated model 
updating optimization solvers [2]. Extension of these tools 
with probabilistic analysis capabilities now offers a solution 
to also incorporate uncertainty in the model validation and 
updating process. This holds a promise to solve some of 
the remaining difficulties like selection of updating 
parameters, definition of targets (i.e. when is correlation 
satisfactory) and interpretation of results. Without the 
additional insight that can be gained from probabilistic 
analysis, these decisions have to be made mainly based 
on engineering judgment. 
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Probabilistic analysis is here defined as the collection of 
tools that produce and interpret point clouds rather than the 
single point results produced by deterministic analysis. 
Together with model updating (and its supporting tools like 
correlation analysis, and sensitivity analysis), probabilistic 
techniques provide the framework to enhance the validity 
of realistic simulation models by dealing with uncertainty.  
 
Although the techniques described hereafter are generally 
applicable, emphasis will be on linear structural dynamics. 
This is no surprise because structural dynamics today 
continues to be one of the more challenging types of 
engineering analysis. The many influencing variables, often 
badly known like damping, and their interactions, seldom 
allow analysts to produce satisfactory simulation models 
from their first version. Luckily, however, the technology 
and instruments are available to measure dynamic 
responses of structures in a relative fast and reliable way. 
In addition, testing can be done under controlled laboratory 
or real-life operating conditions resulting in potentially 
abundant collections of data that contain valuable 
statistical information for analysts. 
 
2. SOURCES OF UNCERTAINTY 
 
Uncertainty in numerical simulation results manifests itself 
in 2 main classes: physical uncertainty and numerical 
uncertainty. 
 
There exist four main levels at which physical uncertainty, 
or scatter, becomes visible: 
 
- Boundary and initial conditions - impact velocity, 

impact angle, mass of vehicle, characteristics of 
barrier, etc. 

- Material properties – elasticity, yield stress, density, 
damping, local imperfections, etc 

- Geometry - shape, thickness, joint stiffness, 
manufacturing and assembly tolerances, etc. 

- Loads - earthquakes, wind gusts, sea waves, blasts, 
shocks, impacts, etc. 

 
Uncertainty is further increased because many of these 
properties may vary substantially with temperature, 
frequency, or load level. 
Information on these forms of scatter can be obtained by 
measurement. A sufficient large number of samples need 
to be evaluated to distinguish the natural and intrinsic 
scatter from the (often high) scatter that may be attributed 
to a small number of statistical samples. Probability 
distribution functions and their associated properties can 
be obtained from the statistical analysis of the test data. 
For example, the elastic modulus of isotropic materials can 
be described using a normal (Gauss) distribution that is 
characterized by a mean value and standard deviation.  
 
The following types of numerical uncertainty can be 
identified: 
 

 
- Conceptual modeling uncertainty - lack of data on the 

physical process involved, lack of system knowledge. 
- Mathematical modeling uncertainty - accuracy of the 

mathematical model validity. 
- Discretization error uncertainties - mesh density. 
- Numerical solution uncertainty - rounding-off, conver-

gence tolerances, integration step. 
- Human mistakes - programming errors in the code, 

data and units mistakes, wrong utilization of the 
software. 

 
These types may or may not exist regardless of the 
physics involved. Another example of the exhibit of 
numerical uncertainty is the different results that may be 
obtained by two finite element codes, using the same finite 
element model. Indeed changing solver, computing 
platform, and/or element formulation can be possible 
causes. 
 
It is clear that uncertainty also exists in testing. Possible 
causes of physical uncertainty are related to: 
 
- Test definition – fixture, mounting procedure, 

excitation method, transducer location, sensor weight, 
etc. 

- Dynamic loading 
- Instrumentation – calibration, distortions, cabling 

noise, etc. 
- Data acquisition – digital signal processing, 

measurement and filtering error. 
 
Techniques like Experimental Modal Analysis, are also 
subject to numerical uncertainty in the mathematical 
models that are used for modal parameter estimation. 
 
3. HOW TO DEAL WITH UNCERTAINTY 
 
Increasing model size (i.e. mesh density) is not 
automatically leading to better simulation models. Instead, 
correctly representing the physics that govern the 
performance of a product is much more rewarding. 
Increasing complexity of engineering systems and the 
existence of scatter result in uncertainty, a layer of physics 
that in the past has often been overlooked in CAE. When 
incorporating uncertainty in the analysis of large and 
complex systems, the performance is described in terms of 
trends, patterns, averages or most likely performance. 
Classical deterministic analysis, on the other hand, 
attempts to improve the nominal performance, which 
practically never coincides with the most likely 
performance.  
 
This is illustrated in the following example [3]. The 
expected value is a measure of central tendency and is 
commonly referred to as the mean value of a random 
variable. Now let g(X) be a continuous function of the 
continuous random variable X. For this case the expected 
value E of g(X) is given by 
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with f(X) the Probability Density Function (PDF), which 
defines the distribution of the probability density associated 
with X. 
 
It can be shown that for the general case,   
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Where is the Standard Deviation on variable X, while Xσ
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The importance of this result is that, in general, the 
expected value of a structural response cannot be obtained 
by simply calculating the response associated with the 
nominal values of the random variables. It is for this reason 
that specific probabilistic analysis techniques are required 
to estimate the probability distribution of responses from 
the known (or assumed) distributions on variables. 
Statistical methods, and Monte Carlo Simulation (MCS) in 
particular, provide a solution to incorporate uncertainty in 
numerical simulation and thus compare simulation with test 
in terms of probability and confidence rather than in 
classical one-to-one deterministic correlation.  
 
The Monte Carlo method is a numerical method of solving 
mathematical problems through random sampling. As a 
universal numerical technique, the method became 
possible only with the advent of computers, and its 
application continues to expand with each new computer 
generation. Although the focus nowadays is still on 
reducing the number of samples (like pseudo-random 
sampling, or Latin Hypercube Design Of Experiments), the 
Monte Carlo method is a general applicable probabilistic 
method that works in all cases and is therefore considered 
as a reference tool.  
 
The concept of a probabilistic analysis based on Monte 
Carlo Simulation is rather simple. A set of design 
parameters is specified with their probability distribution 
functions (PDF) and the objective is to obtain a description 
of the performance of the system on a statistical basis, i.e. 
via histograms. This can be done by repeatedly generating 
a random selection of possible parameter values (based on 
their PDF) and run the solver for each selection. Each 
random selection will lead to a different analysis result. All 
results are statistically post-processed to obtain the PDF of 
the responses or to obtain confidence intervals. If a 
sufficient large number of analyses are run, then it can be 
shown that PDF of the responses approaches their real 

PDF. With only a limited number of runs, the response PDF 
can only be known approximately. However, for most 
engineering analysis an extremely high precision is not 
required (unless the application is reliability studies) and in 
practice modern and efficient sampling schemes enable to 
work with between 100-150 random samples. This number 
is independent of the number of random parameters used.  
 
It is essential to understand that this type of repetitive 
random sampling and re-analysis is required because it is 
not possible to know the most likely value of the structural 
responses simply by calculating the response associated 
with the nominal values of the input random variables, as 
was shown previously. In the same way, the practical 
minima and maxima of structural responses cannot be 
obtained by calculating the responses associated with the 
minimum and maximum values of the input parameters 
respectively (interval analysis).  
 
This is illustrated in the following simple example [4]: 
imagine that the norm of a N-dimensional vector is the 
performance value that needs to be minimized. Suppose 
that the N components of the vector are random normal 
(Gauss) variables with mean 0 and standard deviation 0.3.  
Samples of these components show that all variables are 
in the range [-1, +1] for N = 10. Solving this problem in a 
classical deterministic way leads to the trivial solution that 
the minimum norm of the vector is zero, requiring that all 
components also be equal to zero. This is true for any 
value of N. The norm computed for the extreme values of 
the variables is 3.16. However, solving this problem with 
Monte Carlo Simulation leads to the following surprising 
results: 
 
N Min. Nom Max. Norm Mean Norm 
10 0.2  1.5  0.9 
50 1.5  2.7  2.1 
100 2.3  3.6  3.0 
 
Neither the minimum nor the mean norm are zero. The 
table shows additional results for higher values of N, 
showing that the values increase if the dimension of the 
vector increases. 
 
The results in the table have been obtained simulating the 
vectors 1000 times. The minimum and maximum values 
correspond with a cumulative probability value of 0.001 
and 0.999 respectively. However, using much less Monte 
Carlo samples allows finding approximate but indicative 
numbers for the norms. These values are an intrinsic 
property of the vector norm and not of the number of Monte 
Carlo samples.  
 
The above results show that model validation should be 
concerned about the most likely response of the structure 
when comparing results from simulation and testing. For 
systems that exhibit significant scatter, the most likely 
response cannot be readily obtained with deterministic 
analysis and Monte Carlo Simulation is required. 
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4. PROBABILISTIC VALIDATION AND UPDATING 
 
In [4-5], an approach to statistical validation and updating 
of simulation models based on the concept of meta-
models is presented. Monte Carlo analysis produces 
histograms and scatter plots. Histograms show the 
number of times a response value (or a range) is obtained 
and reflects the underlying probability density. Scatter 
plots are orthogonal projections of an N-dimensional point 
cloud into 2D or 3D plots. Each point cloud represents the 
relation between a random input variable and a 
corresponding output value. There is a point for each state 
(also called sample) of the input variable. On statistical 
grounds, the collection of all point clouds, one for each 
input-output variable combination, constitute a new 
concept of model, often referred to as Meta-Model in 
literature. This model can be complemented by input-input 
and output-output relationships. An example of point 
clouds is shown in figure 1. 
 
It is clear now that in the presence of scatter, the single 
deterministic response represents only one point of the 
cloud and therefore carries little information on likeliness 
and trends. The point clouds on the other hand can be 
interpreted in term of probability of a response value lying 
below or above a prescribed level. At a minimum, all 
responses are now defined as an interval with information 
on the confidence an analyst can have that the true 
response value will be within this interval. Additional 
statistical information can be derived if necessary. 
 
Another fundamental concept is that of distance between 
meta-models. Statistical theory provides a simple measure 
of distance between 2 Meta Models, namely the 
Mahalonobis distance: 
 

)(COV)(d 21
1

p
t

21M µ−µµ−µ= −   (5) 

 
where the vectors 1µ  and 2µ  represent the centres of 
gravity of each meta model and the pooled 
covariance matrix. Whereas a deterministic measure of 
correlation, like for example the average relative error on 
resonance frequencies, provides only a snapshot measure 
that could be good or bad depending on coincidence, the 
Mahalonobis distance is clearly a much safer measure 
because it is based on position and shape of point clouds. 
Coincidence, good or bad luck with parameter estimations, 
or variable measurement conditions can hardly influence 
this result. Figure 2 shows illustrates the Mahalonobis 
distance between 2 point clouds. 

pCOV

 
The concept of meta models, both for numerical simulation 
and testing, together with the Mahalonobis metric, enables 
to compare responses in a statistically sound and rigorous 
manner. Position, shape and size of point clouds should 
be compared with the test meta model being the 
reference. For example, consider the scatter plots shown 
in figures 3 and 4. Differences in the principal axes of the 
two ellipses suggest either a major shortcoming in the 

discretization of structures geometry, a physical 
discrepancy between the two models or simply modelling 
errors. It should be clear that relative translation and 
overall size of point clouds are easier to correct than 
relative rotations. The former merely indicate systematic or 
global errors whereas the latter usually indicate (local) 
physical errors. 
 
Secondly, the level of scatter in the two models is clearly 
different. Although this may be desirable in some cases, it 
is in general preferable to obtain a simulation model that 
exhibits a level of scatter that is in balance with the scatter 
on the test data.  
 
A fundamental contribution of meta model analysis 
towards model updating is the possibility of pinpointing the 
dominating parameters of a system and to quantify the 
correlations between the input and output variables. This 
is the equivalent of sensitivity analysis in deterministic 
analysis. However, the concept of sensitivities, or 
gradients, no longer exists in the presence of scatter. So 
unless scatter is very low and can be neglected, other 
procedures to identify the dominant parameters need to be 
applied. In a similar way, not all available responses may 
be of equal relevance. Indeed, statistical postprocessing 
may reveal hidden relations and identify dependent and 
independent responses. As a result, the analyst can 
reduce the order of the system to include the most 
dominant parameters and independent responses. Using 
regression analysis, relations between the dominant 
parameters and independent responses are established. 
The objective of model updating is then to solve the 
system of equations for unknown parameter properties 
that change the centre of gravity, the principal directions 
and the density of point clouds resulting from probabilistic 
analysis to match the corresponding test point clouds. In 
fact this comes down to ‘updating‘ the Probability Density 
Function (PDF) of input parameters such that the PDF of 
the outputs correspond with the PDF of the experimental 
reference responses. In its simplest form, assuming a 
normal probability distribution, this means that in addition 
to the nominal value (like in deterministic model updating), 
also the standard deviation of model parameters should 
be adjusted. 
 
For a more profound discussion of these concepts and 
possible procedures, the reader is referred to [4] which is 
based on initial experiences in automotive and aerospace 
industry. 
 
It should be noted that the ranking of input parameters 
based on how much they influence the performance of the 
system, offers additional benefits in the subsequent design 
improvement phase. Indeed, a designer or engineer does 
not need to spend time with input parameters that have 
only minor influence. Instead the functional performance of 
the design can be modified most efficiently by working with 
the most dominant parameters only. Reducing the scatter 
on these parameters (for example by specifying more 
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severe manufacturing tolerances) is the most rewarding in 
terms of robustness of the design. On the other hand, the 
engineer should relax tolerances on the parameters that 
do not significantly influence the performance, and in the 
process save money on manufacturing costs. An example 
of parameter ranking using pie-charts is shown in figure 5.  
 

5. A MIXED DETERMINISTIC-PROBABILISTIC 
PROCEDURE  

The consequences of adopting a probabilistic approach to 
CAE and simulation model updating in particular are 
significant. Concepts like gradients (sensitivity analysis), 
variational analysis and optimization rely on a functional 
relationship between parameters and responses. These 
are no longer usable when this relation is described in 
terms of meta-models. Now does all this mean that we 
should throw overboard all our existing deterministic 
updating technology? Certainly not!  
 
The probabilistic procedure that is described in the 
previous section, represents an idealized process in which 
an engineer has access to unlimited simulations and tests. 
In practice the following obstacles arise: 

- The amount and quality of test data is limited by tight 
budgets and time frames available for testing. In 
practice, only one test may be available and no 
reliable statistical information on the probability 
distribution. 

- The probability distribution of input parameters can 
only be known as the result of intensive testing. 
Although this is certainly encouraged, most of the 
time only nominal, or minimum and maximum values 
are available.  

- Model size and solver time still restrict the number of 
re-analysis runs that can be run. Fast but approximate 
solutions may be available but these also introduce 
numerical uncertainty. 

- Uncertainty on the number of required samples. For 
example: critical reliability analysis will not accept 
MCA with only 100 samples if the requirements state 
that only less than 1 out of 10000 products may fail.  

- The ‘distance’ between FEA and test can be 
significant and exceed what could be explained by 
scatter only. In a preliminary analysis phase, it has no 
use to run expensive probabilistic analysis if the FE 
model that is used exhibits to many deficiencies (for 
example, the FE model is simply not capable of 
representing the true system response, wrong 
physical properties are used, there exist too many 
numerical errors etc.) 

 
For these reasons, classical deterministic correlation and 
model updating will continue to provide good services for a 
long time to come. However, the benefits of probabilistic 
analysis should not be neglected. It is therefore proposed 
to adopt a mixed deterministic-probabilistic procedure in 
which classical test-analysis correlation and model 
updating fits in without changes. 

Deterministic correlation and updating techniques for 
structural dynamics applications are based on the 
functional relationship between the measured modal 
characteristics and the structural parameters that can be 
expressed in terms of a Taylor series expansion limited to 
the linear term. This relationship can be written as: 
 

{ } { } [ ]{ } { }( )ouae PPSRR −+=    (6) 
 
or 
 

{ } [ ]{ }PSR ∆=∆     (7) 
 
Where: 
 
{ }eR  Vector containing the reference system responses 
(experimental data). 
{ }aR  Vector containing the predicted system responses 

for a given state { }oP  of the parameter values. 
{ }uP  Vector containing the updated parameter values. 
[ ]S  Sensitivity matrix. 
 
The discrepancy between the initial model predictions and 
the test data is resolved by minimizing a weighted error E, 
given by: 
 

{ } [ ]{ } { } [ ]{ })( PCPRCREMin P
t

R
t ∆∆+∆∆=  (8) 

 
and subject to constraints  
 

maxmin;0)( PPPPgi ≤≤≤   (9) 
 
The matrices [ ]RC  and [ ]PC  respectively express the 
confidence of the user in the reference system responses 
and initial parameter estimates [6]. In case the confidence 
matrices are derived from statistical postprocessing of 
multiple tests, then they can be obtained from the 
covariance matrices. Equivalence with the Mahalonobis 
distance (equation 5) should be noted here. 
 
Deriving equation (8) and minimizing E with respect to the 
parameter values, leads to a updated value for the 
parameter values that simultaneously reduce the distance 
between the simulation and test results (based on single 
values for resonance frequencies, modal correlation 
coefficients etc.), but at the same time keep the distance 
between the original and updated model minimal (in terms 
of parameter changes).   
 
The implementation of the above method in commercial 
software like FEMtools [2], offers the analysts a broad 
choice of response and parameter types to explore the 
behaviour of the simulation model and quickly try different 
strategies to improve correlation (see figure 6). However, 
validation in dynamics focuses on mode orthogonality 
(based on standards used in defence and aerospace 
industry) and mode vector correlation. Engineering 
judgment remains critical for the selection of updating 
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variables, definition of targets and interpretation of results. 
Automating these tasks will most benefit from the 
introduction of probabilistic concepts. 

A mixed deterministic-probabilistic procedure can be used 
as an intermediate step before the advent of entirely 
probabilistic procedures like the one described in the 
previous section. Let’s review this procedure in more detail 
(see figure 7): 

 

- Distinguish model-related uncertainty (partially 
physical, partially numerical) from uncertainty due to 
manufacturing and operational uncertainty. 

- Apply classical deterministic correlation and updating. 
The results are improved global correlation levels and 
information on the minimal parameter changes 
required to obtain these changes. 

- Estimate the probability distribution function (PDF) of 
input parameters. 

- Run Monte Carlo Simulation, possibly with reduced 
models and/or using smart sampling, to obtain the 
simulated PDF on output responses. 

- If PDF information on output responses is available 
(from multiple testing), then compare with the 
simulated PDF. This comparison provides information 
to adjust the PDF of the input parameters. 

- The updated simulation model can be used for 
subsequent optimisation (deterministic). 

- Apply the updated PDF on input parameters to predict 
output responses PDF of optimised FEM and interpret 
in terms of quality, cost, robustness and reliability. 

 

A critical part is the numerous re-analysis that is required 
for Monte Carlo Simulations. Because in general finite 
element models are used, this means that for every 
sample of the parameter values, a new FE model needs to 
be generated and passed through a solver. In addition to 
using modern MCS techniques that allow to reduce the 
number of samples, possible ways to accelerate the re-
analysis phase are: 

- Using a modal solver.  
- Using reduced system matrices and perturbation of 

the reduced matrices. 
- Using first-order gradients (for very small levels of 

scatter) up to higher order sensitivity analysis for 
larger levels. In a general way, response surface can 
be used. Standard structural dynamics allows for the 
efficient computation of first-order gradients and thus 
the construction of a response plane. Design of 
experiments techniques or advanced variational 
analysis methods are required if higher order 
response surfaces are required.  

6. CONCLUSIONS  

Validation of a single deterministic model using a single 
test is leading to a snapshot result. While this may be 
valuable for roughly calibrating the input parameters, and 
to gain insight in the behaviour of the model, information 
on the broader picture is missing. This lack of information 
must currently be compensated by the engineering 
judgement of the analyst and prohibits further automation 
of model validation and updating processes. Probabilistic 
analysis, together with uncertainty management and 
knowledge databases, and enabled by massive computing 
capacity, hold the promise to provide the necessary tools 
to revolutionize CAE and lead to better, more reliable 
simulation models, not necessarily bigger models as it 
seems to be the trend nowadays. The available computing 
capacity, and automatic meshers linked to CAD models, 
should be used not to run increasingly bigger FE models 
but rather to construct meta models that can be validated, 
enhanced and used as the basis for quality improvement, 
cost reduction, robust design and reliability analysis. 
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FIGURES 

 

Figure 1: A meta-model represented as a 3D cloud. 
 
 

 
Figure 2: The Mahalonobis distance between two meta-
models is measured relative to the means of each cloud. 
 
 

Figure 3: Example of two physically distant models. 
 
 

 

Figure 4: Example of two physically close models. 
 
 
 
 
 

Figure 5: Identification of dominant variables using 
Spearman’s rank correlation technique. The highest ranked 
variables have the highest relative influence on the 
response, taking into account the presence of scatter. 
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Figure 6: Test-analysis correlation and updating of finite element models for structural dynamics. 
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Figure 7: A mixed deterministic-probabilistic methodology to combine classical model validation and probabilistic analysis 

to introduce uncertainty on the input parameters and in the reference test data. 
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